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Abstract

Background: Shame and stigma often prevent individuals with social anxiety disorder (SAD) from seeking and attending costly
and time-intensive psychotherapies, highlighting the importance of brief, low-cost, and scalable treatments. Creating prescriptive
outcome prediction models is thus crucial for identifying which clients with SAD might gain the most from a unique scalable
treatment option. Nevertheless, widely used classical regression methods might not optimally capture complex nonlinear associations
and interactions.

Objective: Precision medicine approaches were thus harnessed to examine prescriptive predictors of optimization to a 14-day
fully self-guided mindfulness ecological momentary intervention (MEMI) over a self-monitoring app (SM).

Methods: This study involved 191 participants who had probable SAD. Participants were randomly assigned to MEMI (n=96)
or SM (n=95). They completed self-reports of symptoms, risk factors, treatment, and sociodemographics at baseline, posttreatment,
and 1-month follow-up (1MFU). Machine learning (ML) models with 17 predictors of optimization to MEMI over SM, defined
as a higher probability of SAD remission from MEMI at posttreatment and 1MFU, were evaluated. The Social Phobia Diagnostic
Questionnaire, structurally equivalent to the Diagnostic and Statistical Manual SAD criteria, was used to define remission. These
ML models included random forest and support vector machines (radial basis function kernel) and 10-fold nested cross-validation
that separated model training, minimal tuning in inner folds, and model testing in outer folds.

Results: ML models outperformed logistic regression. The multivariable ML models using the 10 most important predictors
achieved good performance, with the area under the receiver operating characteristic curve (AU-ROC) values ranging from .71
to .72 at posttreatment and 1MFU. These prerandomization and early-stage prescriptive predictors consistently identified which
participants had the highest probability of optimization of MEMI over SM after 14 days and 6 weeks from baseline. Significant
predictors included 4 strengths (higher trait mindfulness, lower SAD severity, presence of university education, no current
psychotropic medication use), 2 weaknesses (higher generalized anxiety severity and clinician-diagnosed depression or anxiety
disorder), and 1 sociodemographic variable (Chinese ethnicity). Emotion dysregulation and current psychotherapy predicted
remission with inconsistent signs across time points.

Conclusions: The AU-ROC values indicated moderately meaningful effect sizes in identifying prescriptive predictors within
multivariable models for clients with SAD. Focusing on the identified notable client strengths, weaknesses, and Chinese ethnicity
may enhance our ability to predict future responses to scalable treatments. Estimating the likelihood of SAD remission with a
“prescriptive predictor calculator” for each client may help clinicians and policymakers allocate scarce treatment resources
effectively. Clients with high remission probability may benefit from receiving the MEMI as a vigilant waitlist strategy before
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intensive therapist-led psychotherapy. These efforts may aid in creating actionable treatment selection tools to optimize care for
clients with SAD in routine health care settings that use stratified care principles.

Trial Registration: OSF Registries 10.17605/OSF.IO/M3KXZ; https://osf.io/m3kxz

(JMIR Ment Health 2025;12:e67210) doi: 10.2196/67210
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Introduction

Social anxiety disorder (SAD) is a global public health concern
with high current prevalence rates ranging from 2% to 25%
[1-4]. If left untreated, SAD could raise socioeconomic burdens
by limiting educational and career attainment as well as
impairing physical health [1,5]. Individuals struggling with
SAD exhibit an enduring apprehension and avoidant habitual
reactions to social or performance settings with fears and worries
of negative social evaluation [6]. They also maintain fewer
confidants, spend less time with friends, and persistently report
negative moods [7], likely interfering with daily functioning
[8]. Reviews consistently showed that heightened SAD was
linked to negative self-views [9], frequent health care service
usage [10], and worse quality of life [11]. Given its early onset
and debilitating course [12], addressing the accessibility and
scalability of treatment options for SAD is imperative.

Meta-analyses of randomized controlled trials (RCTs) evidenced
the efficacy of labor-intensive mindfulness-based interventions
(MBIs) for SAD [13]. Face-to-face 8- to 12-week MBIs, such
as mindfulness-based stress reduction (MBSR [14]) and
mindfulness-based cognitive therapy (MBCT [15]), dominate
conventional delivery approaches [16]. These MBIs typically
included intensive retreats for mindfulness meditation, lasting
from 3 days to 3 months [17]. However, stigma, logistical,
financial, and time constraints [18] hinder accessibility,
highlighting the importance of digital, self-guided MBIs as a
scalable solution for SAD.

Such digital and self-guided MBIs yielded small yet clinically
meaningful decreases in social anxiety symptoms and subjective
attention control deficits within 2-14 weeks [19,20]. Thus, even
brief digital MBIs are efficacious at least in the short run. These
brief self-guided MBIs can take a number of forms. For
example, concise online interventions, consolidate core
psychotherapy components in 1-6 hour-long sessions to
encourage behavioral changes [21,22]. However, such online
interventions are typically conducted within full sit-down
sessions and there are questions about whether such hour-long
weekly session interventions optimally generalize to individuals’
day-to-day lives and provide more long-term change. It is also
difficult to know whether such sessions will generalize to the
real world and day-to-day practice [23,24].

To address this concern, there has been more development of
in-the-moment digital interventions provided and prompted in
individuals’ day-to-day lives via smartphone apps (also known
as ecological momentary interventions [EMIs] [21]). EMIs

leverage smartphones using web-based platforms with varying
time courses, with or without human coach support [25,26].
These EMIs consistently offer real-time therapy content to boost
emotion regulation (ER) and target SAD-associated symptoms
[27]. Mindfulness ecological momentary interventions (MEMIs)
provide concise and real-time prompts to apply therapy skills
at the moment and thus could be superior to conventional digital
MBIs by seamlessly integrating practices into everyday routines,
targeting daily stressors and symptoms, and strengthening new
ER habits [28-31].

Nonetheless, there remains a paucity of knowledge of individual
predictors of variable response to brief MEMIs for SAD. RCTs
offer aggregate-level efficacy estimates, however, they do not
reveal patient-level variations in treatment response. Even small
between-treatment effect sizes may conceal heterogeneous
treatment effects [32]. At the same time, systematic reviews
(eg, [33]) and empirical studies (eg, [34] indicated that symptom
and treatment variables might predict individual differences in
MBI efficacy. Investigating treatment response variability, also
called heterogeneous treatment effects [35], is critical for
identifying which individuals with SAD gain the most from
brief MEMIs.

Research on heterogeneous treatment effects in SAD has
primarily focused on resource-intensive, face-to-face,
nonscalable psychotherapies rather than scalable MBIs. Studies
have tested patient attributes, symptom severity, and treatment
processes as plausible predictors of CBT efficacy [36-40]. For
instance, meta-regression showed that greater baseline symptom
severity predicted better response to CBT for SAD [41], whereas
delivery approach and treatment duration were nonsignificant
moderators of intensive MBIs [42]. Expanding this investigation
to brief MEMIs for SAD is crucial to better inform
treatment-matching.

Precision medicine approaches may optimize
treatment-matching by tailoring brief MEMIs to people with
SAD based on their unique baseline attributes to improve
patient-centered care [43]. Machine learning (ML), which
prioritizes prediction and explanation [44], can model complex
(eg, nonlinear), multivariable, high-dimensional interactions to
identify prescriptive predictors (treatment efficacy moderators
[45]). Unlike ordinary least squares (OLS) regression methods,
ML approaches could better identify nonlinear associations and
moderation effects, enhancing the prediction of heterogeneous
treatment effects [46,47]. Moreover, the ability of ML to
generalize accurate predictions to new, previously unseen data
renders it well-suited to guide and optimize treatment selection
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[48]. Despite its potential, no studies have leveraged ML to
predict heterogeneous treatment effects for brief MEMIs in
SAD.

Integrating theories, such as capitalization versus compensation
models [49], into ML methods can enhance variable selection
and generalizability and minimize false discoveries by testing
a prescriptive predictor set solely informed by theory, logic,
and research [50]. The compensation model proposes that
treatment response relies on effectively addressing patients’
disorder-specific vulnerabilities and deficits [49]. Conversely,
the capitalization model posits that treatment response is likely
greater when harnessing clients’ relative strengths [51].

Aligned with the compensation model, clients with SAD who
display excessive perseverative cognitions, increased avoidance,
greater depression severity, and impaired attention may benefit
from MEMIs [49,52-56]. This is likely because MEMIs
repeatedly teach nonjudgmental acceptance, present-mindedness,
and valued activities. Consistent with the capitalization model,
clients with fewer baseline SAD symptoms [57,58], higher
self-compassion [59,60], stronger treatment credibility and
expectancy [56], no current psychotropic medication, and greater
trait mindfulness [13] benefitted from brief MBIs [56-61]. This
may have been because these strengths helped increase
engagement and positive self-fulfilling prophecies [51]. Findings
on ER as a prescriptive predictor have been mixed [62,63],
highlighting the importance of further research. Together,
individuals with such profiles would likely benefit more from
MEMIs for SAD than a self-monitoring-only app (SM).

Building on previous research, this study examined novel
prescriptive predictors of a brief, fully self-guided, scalable
MEMI for SAD. We extended an earlier RCT [64,65] on
generalized anxiety disorder (GAD) to a new SAD sample [66].
This RCT showed that both MEMI and SM produced
longer-term effects on SAD and its comorbid symptoms and
risk factors, with significant between-group differences in
momentary anxiety, depression, and mindfulness but not
retrospectively reported symptoms [66]. Hypotheses were 2-fold.
First, we predicted that multivariable prescriptive ML models
would show acceptable performance (area under the receiver
operating characteristic curve [AU-ROC] ≥.70) in predicting
SAD remission (ie, absence of diagnosis based on the Social
Phobia Diagnostic Questionnaire [SPDQ] [67]) at posttreatment
and 1-month follow-up (1MFU; hypothesis 1). Acceptable
model performance predicting differential efficacy to scalable
interventions is crucial for building an actionable treatment
selection tool. Second, we hypothesized that we could identify
baseline variables that would predict the superiority of MEMI
over SM at posttreatment and 1MFU SAD remission for
individuals. In particular, we predicted that higher SAD, GAD,
depression severity, perseverative cognitions,
clinician-diagnosed anxiety or depression, as well as poorer
trait mindfulness, and attention control, would predict better
outcomes from MEMI (compensation model). We also predicted
that higher compassion, treatment expectancy, credibility,
absence of current psychotropic medication use, university
education, and lower emotion dysregulation would predict better
outcomes from MEMI versus SM (I model; hypothesis 2). Four
other examined variables (age, sex, race, and current

psychotherapy) were exploratory. Identifying prescriptive
predictor patterns could help guide treatment-matching and
optimize patient-centered care for SAD using under-investigated
brief scalable MEMIs.

Methods

Participants
In our preregistered RCT [68,69], we used a 2 (treatment:
MEMI, SM) by 3 (time: preintervention, posttreatment, 1MFU)
mixed design to evaluate the efficacy of 14-day MEMI against
SM in addressing clinical outcomes (Multimedia Appendix 1).
Treatment assignment (MEMI or SM) was the between-person
factor, whereas time was the within-person factor. This design
for identifying treatment moderators with 17 prescriptive
predictors using precision medicine was appropriate for several
reasons. First, the assessor-blinded, balanced RCT design
permits the adjustment of measured and unmeasured covariates
and facilitates causal inference as part of developing the
treatment selection tool [70]. Second, 2 armed RCTs facilitate
identifying prescriptive predictors of the superiority of an active
treatment to a control condition, which helps identify predictors
specific to one form of treatment [71]. Also, the presence of
randomization minimized selection bias, which could hinder
the detection of prescriptive predictors [72]. Third, examining
remission likelihood at 3-time points (pretreatment,
posttreatment, and 1MFU) enabled testing whether prescriptive
predictor patterns were generalizable across timeframes, offering
more confidence in reproducible findings.

Ethical Considerations
The current secondary analysis of an individually randomized
parallel-group, assessor-blinded RCT received ethical approval
from the National University of Singapore (NUS). All
participants offered voluntary informed consent and could
withdraw at any time without penalty. Deidentified data were
collected and stored on a secure-encrypted cloud server.
Participants were reimbursed monetarily or through course
credits for their participation.

Eligible participants met the criteria of self-reported SAD,
defined as a Social Phobia Inventory (SPIN) [73] score of ≥20.
The ≥20 SPIN score discriminated individuals with and without
SAD in previous research, balancing both sensitivity and
specificity [73-75]. Eligibility also included being aged 18 or
older, possessing a smartphone, and actively seeking assistance
for mental health concerns. To enhance participant safety and
eliminate those unlikely to benefit from the interventions,
exclusion criteria encompassed those who self-reported suicidal
thoughts, mania, or psychosis. We recruited individuals from
the psychology subject pool and local community.

Participants (N=191) were randomized to two groups: 96 in
MEMI and 95 in SM (Table 1). On average, they were 21.84
(SD 3.37, range 18-53) years old, with 21.47% (14/191)
identifying as male, 78.01% (149/191) as female, and 0.52%
(1/191) as other; 86.39% (165/191) identified as Chinese, 2.09%
(4/191) as Malays, 6.28% (12/191) as Indian, and 5.24%
(10/191) as other; 87.43% (167/191) were single, in contrast to
those who were married, cohabiting, or in an intimate
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relationship but not residing together. The highest level of
education achieved by 75.92% (145/191) of participants was
junior college, as opposed to earning a diploma, university
degree, or graduate degree. Psychotropic medications had been
used by 5.24% (10/191) of individuals, and 15.71% (30/191)

had received psychotherapy. For more information, refer to the
Consolidated Standards of Reporting Trials
(CONSORT)-eHEALTH checklist [76] in Multimedia Appendix
2.
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Table 1. Sociodemographic characteristics of participants (N=191).

Values

21.84 (3.37)Age (years), mean (SD)

Gender, n (%)

41 (21.47)Male

149 (78.01)Female

1 (0.52)Other

Ethnicity, n (%)

165 (86.39)Chinese

4 (2.09)Malays

12 (6.28)Indians

10 (5.24)Others

Marital status, n (%)

1 (0.52)Married with spouse

1 (0.52)Living with partner

22 (11.52)In an intimate relationship but not living together

167 (87.43)Never married

Education, n (%)

145 (75.92)Junior college

12 (6.28)Diploma

27 (14.14)University degree

7 (3.66)Graduate degree

Employment status, n (%)

12 (6.28)Full-time

40 (20.94)Part-time

139 (72.77)Not employed

Student status, n (%)

178 (93.19)Full-time

5 (2.62)Part-time

8 (4.19)Not a student

Annual salary a , n (%)

172 (90.05)$0-$10,000

3 (1.57)$10,001-$20,000

7 (3.66)$20,001-$40,000

6 (3.14)$40,001-$65,000

3 (1.57)$65,001-$100,000

Psychotropic medication, n (%)

181 (94.76)No

10 (5.24)Yes

aThis refers to Singapore dollars (SGD), with an exchange rate of 1 SGD to US $0.75 US at the time of the study.
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Self-Report Measures

Social Anxiety Disorder Severity
The 25-item SPDQ [67] assessed SAD fear and avoidance
symptoms across different social situations per DSM-IV
(Diagnostic and Statistical Manual of Mental Disorders, Fourth
Edition) criteria. It has demonstrated good retest reliability and
strong internal consistency (Cronbach α=0.96, 0.97, 0.98 at
prerandomization, posttreatment, and 1MFU herein). The SPDQ
evidenced strong discriminant validity, good convergent validity
[67], and excellent sensitivity to change in RCTs [66].

Generalized Anxiety Disorder Severity
The 14-item generalized anxiety disorder Questionnaire-IV
(GADQ-IV [77]) measured symptoms of GAD through a
combination of binary (“Yes” or “No”) and continuous
responses, including two 9-point Likert scales to assess
interference and distress caused by GAD symptoms [77]. It
exhibited strong internal consistency (α=0.93 at
prerandomization) and robust retest reliability [77]. In addition,
it exhibited strong convergent and discriminant validity and
demonstrated good concordance with structured diagnostic
evaluations of GAD [77,78].

Depression Severity
The 21-item Beck Depression Inventory-Second Edition (BDI-II
[79]) assessed the severity of depression symptoms. Participants
selected the severity level (ranging from 0-3) that best matched
their experience with each symptom over the past 2 weeks. The
BDI-II exhibited strong internal consistency (α=.93 at
prerandomization) and strong convergent and discriminant
validity [80].

Baseline Clinical Variables
Participants responded to these questions: “Are you currently
diagnosed with a psychological disorder or condition? If yes,
please indicate the disorder or condition.” “Have you ever been
prescribed medications for emotional or psychiatric problems?”
“Have you ever been in therapy or counseling?” and “What
types of treatment are you currently receiving? You can choose
multiple answers. (psychotherapy, medication, other [please
specify], and not applicable).” The variables “current
psychotherapy” and “psychotropic medication use” were derived
from these questions and included in the predictor set. Data on
changes in medication status were not collected at posttreatment
and 1MFU.

Trait Emotion Dysregulation
The 36-item Difficulties in Emotion Regulation Scale (DERS
[81]) measured participants’ emotion dysregulation, including
emotional confusion, goal inertia, nonacceptance, self-awareness
limitations, and skill deficits. Responses were recorded on a
5-point Likert scale, ranging from 1 (almost never) to 5 (almost
always). Research indicated excellent internal consistency
(α=.86 at prerandomization), acceptable retest reliability [82],
good convergent, and strong discriminant validity [83].

Trait Self-Compassion
The 26-item Self-Compassion Scale (SCS) [84] assessed
trait-level self-compassion, including dimensions of common

humanity, isolation, overidentification, mindfulness,
self-judgment, and self-kindness. Responses were captured on
a 5-point Likert scale, ranging from 1 (almost never) to 5 (almost
always). Internal consistency was high herein (α=.92 at
prerandomization). SCS scores also showed good retest
reliability [85], strong convergent validity, and excellent
discriminant validity [86].

Trait Perseverative Cognitions
The 45-item Perseverative Cognitions Questionnaire (PCQ [87])
assessed persistent, perseverative cognition tendencies
associated with obsessive, ruminative, and worrisome thoughts.
Participants rated items using a 6-point Likert scale ranging
from 0 (strongly disagree) to 5 (strongly agree). It included 6
domains: anticipating negative outcomes, dwelling on the past,
preparing for the future, thoughts conflicting with the ideal self,
perceived lack of control, and searching for causes and
meanings. It showed good internal consistency (α=.96 at
prerandomization), strong 2-week retest reliability, excellent
discriminant, and convergent validity, and cross-cultural
measurement equivalence between the United States and
Singapore [88].

Trait Mindfulness
The 39-item Five-Facet Mindfulness Questionnaire (FFMQ
[89]) evaluated participants’ inclination to practice mindfulness
in 5 domains: observation, nonreactivity to inner experiences,
nonjudgment, description, and awareness of the consequences
of actions. It used a 5-point Likert scale, ranging from 1 (never
or very rarely true) to 5 (very often or always true). The overall
score of the FFMQ has shown strong convergent validity,
differentiation from measures of unrelated constructs (eg,
psychological well-being [89]), and good retest reliability. The
α value was .90 at prerandomization.

Trait Attention Control
The Attentional Control Scale (ACS [90]) comprised 20 items,
merging a 9-item measure of attention focusing with an 11-item
measure of attention shifting. The ACS has good convergent
and predictive validity [91], acceptable discriminant validity
[92], and excellent retest reliability. The α value was .87 at
prerandomization.

Treatment Credibility and Expectancy
Following the presentation of the video presentation of the
therapeutic rationale in each group, participants completed the
6-item Credibility and Expectancy Questionnaire (CEQ [93])
to assess their belief in the credibility of the intervention and
its potential to alleviate symptoms. Examples include “By the
end of the therapy period, how much improvement in your
symptoms do you think will occur?” and “By the end of the
therapy period, how much improvement in your symptoms do
you really feel will occur?” The CEQ demonstrated robust retest
reliability and excellent internal consistency [93].

Procedure
Initially, eligible participants completed a set of counterbalanced
questionnaires using the counterbalancing functionality in
Qualtrics. Counterbalancing minimizes sequencing influences
by randomizing the presentation order of individuals completing
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unique self-assessments. This method prevented possible biases
due to a fixed presentation order of the self-assessments, such
as carry-over effects, fatigue, and practice effects [94].
Participants were then randomly assigned to MEMI or SM using
the random generator function (RAND) of Microsoft Excel with
permuted blocks of various sizes (2, 4, and 6) to create
unpredictability [95]. This method gave every participant an
equal probability of either group allocation. Allocation
concealment was conducted by blinding research personnel who
collected and analyzed data from the assigned group to maintain
randomization integrity and prevent bias [96].

After completing all pretreatment assessments, the relevant
group-assigned video using Qualtrics was provided toward the
conclusion of the baseline visit. Participants installed the
Personal Analytics Companion (PACO) app [97], which housed
either MEMI or SM on their smartphones, with the video
demonstrating its features. Participants were informed that they
would receive prompts at 5 daily intervals (around 9 AM, noon,
3 PM, 6 PM, and 9 PM) during the subsequent 14-day period.
Prompts could be adjusted to suit participants’ schedules. To
maintain validity, participants were instructed to input their
responses on state depression, anxiety, and mindfulness both
before and after the MEMI or SM induction within a 2-hour
window of the prompt. Based on their assigned group, the app
prompted guided participants to continually practice mindfulness
or self-observation skills.

Group Characteristics

Mindfulness Ecological Momentary Intervention
Participants received a standardized video presentation in which
the principal investigator explained evidence-based MBI
protocols similar to MBSR. The video guided MEMI
participants to immerse themselves in the present moment and
empowered them with open monitoring and attentive
engagement skills (ie, to attend to temporary moments).
Afterward, the video therapist showcased the skill of paced,
rhythmic diaphragmatic breathing and its application in practice.
Diaphragmatic breathing retraining, resembling mindful breath
awareness, has demonstrated effectiveness in both clinical
[14,98] and nonclinical settings [99,100]. The video therapist
continued by teaching nonjudgmental acceptance, incorporating
elements of MBCT such as diaphragmatic breathing and
mindfulness practices such as observation, nonreactivity, and
nonjudgmental acceptance. These therapy components were
selected to reduce SAD symptoms and self-criticism [13] and
enhance ER and self-compassion [101]. Diaphragmatic breathing
could induce physiological changes, such as lowering resting
heart rate in conjunction with anxiety symptoms [102]. Next,
each MEMI participant was informed about the importance of
consistent mindfulness practice. The 6-item CEQ was then
administered, and participants set up the MEMI on their
smartphones (Multimedia Appendix 3). They were also provided
with the MEMI treatment rationale handout via Qualtrics and
encouraged to engage with mindfulness skills consistently.

Self-Monitoring
In the SM video presentation, the principal investigator began
by defining self-observation as a heightened awareness of one’s

thoughts and emotions, with a particular emphasis on distressing
experiences. The video suggested that monitoring thoughts and
observing associated distress alone could encourage a healthier
mindset. Essentially, the SM video conveyed that focusing
solely on distress had the potential to alleviate anxiety
symptoms. A recent and brief app intervention explanation
inspired the rationale for SM as a placebo control [103-105].
Our SM adaptation sought to mimic MEMI while excluding its
theorized active therapeutic elements, including acceptance,
breath retraining, open monitoring, mindfulness of temporary
moments, and regular mindfulness practice. It refrained from
referencing mindfulness, excluded directions to heighten
awareness of current experiences adaptively, and avoided
guiding participants toward mood-altering engagement with the
present moment. In contrast to MEMI, SM encouraged
participants to observe their thoughts and emotions without
instructing them to accept those thoughts and feelings as they
arose. Breathing retraining guidance was missing, and there
was no instruction to elicit calming sensations linked to
diaphragmatic breathing. Whereas MEMI placed importance
on developing skills persistently, SM participants were not urged
to engage in self-observation between prompts or after the
14-day treatment phase (Multimedia Appendix 4). SM was
designed to adjust for potential credibility, expectancy, and
placebo effects, minimize regression to the mean, and decrease
the likelihood of inflated effect sizes that might occur with
waitlists or no-treatment controls [106,107]. Further details on
treatment engagement, protocol fidelity, and rationale are
provided in Multimedia Appendix 1.

Data Analyses
Our study adhered to the Transparent Reporting of Multivariable
Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) guidelines for conducting and reporting our research
[108,109]. Missing data (10% [344/3438] in each training and
test fold) was managed using random forest (RF) imputation
[110] with the missRanger R package (R Core Team [111])
embedded in the nestedcv R package [112]. RF imputation was
conducted instead of multiple imputations as it better handles
diverse forms of missing data (eg, nonparametric relations),
nonlinearities, and higher-order interactions, and generates less
biased and narrower uncertainty estimates [113]. Model
performance metrics also improved with RF imputation
compared to multiple imputations in building multivariate ML
models [113,114]. Imputation and standardization were not
conducted in the whole dataset, as doing so would result in
information leakage [115]. Thus, imputation was conducted
separately on the training fold in the inner cross-validation loop
and the test folds in the outer cross-validation loops of the ML
analysis detailed below. Continuous variables were normalized
to mean of 0 and SD of 1, and nominal variables were one-hot
encoded separately in the training and test folds [112].

A simulation-based sample size determination method [116-118]
indicated that to detect 2-way interactions of treatment x
predictor for a binary remission outcome, a sample size of at
least 150 was required with 17 initial predictors. The minimum
sample size needed with the final top 10 prescriptive predictors
was 100. Multimedia Appendix 1 details this sample size
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determination method in the context of multivariable ML
analyses.

To explore potentially prescriptive predictive models, we
employed two algorithms—RF and support vector machine
(SVM)—that are appropriate for relatively small sample sizes.
RF trains a parallel ensemble of decision trees by drawing
random samples from a dataset and including stop rules.
Decision trees use training data to create a tree structure that
forms branches at each predictor, enabling the prediction of
outcomes. RF offers advantages such as decreased error rate,
reduced susceptibility to overfitting (generalizability issues),
and diminished influence of outliers over decision trees [119].
RFs can effectively manage correlations among predictors by
automatically decorrelating decision trees. In addition, SVM
classifies data using a hyperplane that optimizes the separation
distance between groups, relying on input predictors. SVM
outperforms logistic regression when groups are easily separable
on outcomes of interest [120]. Both algorithms excel at handling
sparse datasets with sizeable predictor-to-sample size ratios
[121-124]. Also, the logistic regression algorithm used
maximum likelihood estimation and logistic link function as a
reference model. The AUCs of RF and SVM over logistic
regression were compared using DeLong’s test [125,126].

Instead of relying on a conventional training-test set or
nonnested k-fold cross-validation approaches, we used nested
10-fold cross-validation (10F-CV) with 10 repetitions and
grid-search [127]. Nested 10F-CV provides more robust
performance estimates for small sample sizes, maximizes data
utilization, minimizes bias, and controls for overfitting more
than the split train-test approach [128,129]. It subsets the dataset
into 10 outer and 10 inner folds [130]. Inner cross-validation is
used to refine model selection and minimal tuning. In the outer
folds, 10% (344/3438) of the data was reserved for model
testing, whereas the remaining data was used for model
development. This process was reiterated 10 times, each
selecting a distinct 10% (344/3438) of the data for validation
with unseen test data while training a new model using the
remaining 90% (3094/3438). The overall performance was
determined by calculating the mean classification performance
of 10 independently developed models on distinct 10%
(344/3438) subsets of the validation data not used in the model
development process ([131]; refer to Multimedia Appendix 5,
which elaborates on the rationale and procedures of these ML
methods).

Using a counterfactual causal inference approach, we harnessed
a 2-model learner (T-learner) approach to estimate remission
probabilities for each individual across treatment arms,
regardless of their actual intervention assignment (refer to 35
for a step-by-step tutorial and Multimedia Appendix 4 for a
summary of the assumptions for this approach). This method
entailed training RF models separately for the treated (MEMI)
and control (SM) arms to predict remission rates within each
arm [132]. We then applied these models to impute the predicted
remission probabilities for each individual as though they had
received each treatment, irrespective of their actual assignment.
To improve the accuracy of these predictions and reduce
overfitting, we used nested 10F-CV to maximize the likelihood
of model estimates staying generalizable and robust [130]. The

present method provided a nuanced comprehension of
heterogenous treatment effects by generating participant-level
predicted (or imputed) remission probability estimates (ranging
from 0% to 100%) under both scenarios—treated and
untreated—thus demonstrating each treatment’s possible
advantages and shortcomings for each person [133]. Participants
were regarded as optimized to MEMI if their imputed remission
probability scores were higher for MEMI than SM.
Heterogeneous treatment effects were then identified by
computing the difference in imputed remission probabilities
between the two treatments for each individual. This difference
score was used to determine which treatment generated a greater
remission probability for each participant [134]. Participants
were regarded as optimized to MEMI if their imputed remission
probability scores were higher for MEMI than SM. This
approach empowers researchers to efficiently identify subgroups
with greater odds of gaining from particular treatment options,
potentially offering personalized interventions.

Remission was defined as posttreatment and 1MFU SPDQ
scores <12.13, as this cut-off yielded high specificity (true
negative cases accurately detected; 134/143, 94%) and good
classification accuracy (correct categorization into respective
classes; 100/143, 70%) with SAD diagnosis [67]. For each
individual, optimization to MEMI was coded as “1” versus “0”
if the remission likelihood with MEMI exceeded the remission
likelihood with SM. The initial ML model included 17 baseline
predictors: age, gender, ethnicity, education, treatment
credibility, expectancy, SAD, depression, GAD severity,
clinician-diagnosed depression or anxiety disorder, baseline
psychotherapy, current psychotropic medication use, trait
attentional control, emotion dysregulation, mindfulness,
perseverative cognition, and self-compassion. The final model
comprised 10 top predictors of optimization to MEMI, which
were selected through the elastic net regression algorithm
variable screening filter and were well-suited for nested CV
ML analyses [112].

For several reasons, the predictor set did not include
intermediate variables not obtained at baseline, such as
intervention engagement. First, including postbaseline variables
would compromise randomization benefits, thereby biasing
estimates of differential efficacy [135]. Second, adding
postbaseline, intermediate variables into the prescriptive
predictor models could lead to optimism bias, indicated by
inflated effect sizes [136,137]. Third and most importantly,
including variables, such as engagement, that can only be
obtained later during the trial prevents building a clinically
actionable and scalable multivariable model that could inform
treatment selection from the outset solely using accessible
baseline data [138].

Similar to the above, the future change status of variables (eg,
current psychotherapy and medication use) was excluded from
the multivariate equation. Controlling for covariates that change
at future time points, sometimes called controlling for
postintervention factors, might result in biased estimates by
inducing spurious relationships between the treatment and
unmeasured predictors [139]. In prospective studies such as
RCTs, variables assessed postintervention might function as
colliders or mediators, and statistically controlling for them
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could create selection bias or obstruct the causal pathway
[140,141]. Moreover, including change status covariates could
result in overcontrolling, possibly generating spurious
relationships or obscuring the estimation of true treatment effects
and detection of prescriptive predictors [142].

AUC was used to assess classification performance. When AUC
equals .50, it signifies that group differentiation was no more
accurate than chance, whereas a range of .70-.79 indicates
satisfactory differentiation, and an AUC of .80 or higher marks
excellent differentiation. These guidelines also extended to two
additional performance benchmarks: accuracy, which measures
the proportion of correctly classified cases, and balanced
accuracy (BAC), which represents the average of sensitivity
(capacity to identify cases) and specificity.

To manage class imbalance in remission outcome, we applied
the synthetic minority oversampling technique (SMOTE) by
decreasing the overrepresented category while augmenting the
underrepresented category to generate a more equitable dataset
distribution [143]. SMOTE was implemented independently on
the inner and outer folds to avoid data leakage and retain model
evaluation integrity [144]. This procedure ensured that synthetic
samples were created only within the training data of each fold,
preventing contamination of the test set with artificially
generated cases [145]. By performing SMOTE within each fold,
model performance was more accurately tested with future
unseen data, offering a robust estimate of its generalization
abilities. This approach aligned with recommended practices
in ML to manage imbalanced datasets while ensuring the
reliability of CV outcomes [146].

Additional metrics were examined to test ML model
performance more holistically. Sensitivity (true positive rate,
which is also called recall) and specificity (true negative rate)

were computed to evaluate the model’s capacity to accurately
determine optimal versus nonoptimal cases, respectively [147].
Positive predictive value (PPV), also called precision, indicated
the percentage of optimization to MEMI versus SM cases that
were accurately predicted [148]. The F1-score, which balances
precision and recall, offered a unique performance metric that
considered false positives and negatives [149]. The area under
the precision-recall curve (AUPRC) was computed to examine
model performance under various thresholds, which could be
particularly valuable for datasets with imbalanced outcome
proportions [150]. Calibration analysis examined the degree to
which predicted probabilities of optimization to MEMI aligned
with actual outcomes (Multimedia Appendix 5), signifying the
model’s reliability for clinical decision-making [151].

Although interpreting individual ML model coefficients can be
risky due to their focus on overall prediction accuracy over
individual coefficient precision, gaining insight into the direction
of associations between predictors and outcomes remains
valuable. We explored the significance and direction of
predictors of optimization to MEMI by using the kernel Shapley
additive explanations (SHAP) technique, using the fastshap R
package [152]. SHAP is a versatile method for assessing the
significance of predictors and the direction of predictor-outcome
associations in multivariate ML prediction models across various
contexts. All analyses were derived from published ML tutorials
[153-155].

Results

Overview
Figure 1 illustrates the participant flow and recruitment process,
following the Journal Article Reporting Standards [69].

JMIR Ment Health 2025 | vol. 12 | e67210 | p. 9https://mental.jmir.org/2025/1/e67210
(page number not for citation purposes)

Zainal et alJMIR MENTAL HEALTH

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Consolidated Standards of Reporting Trials (CONSORT) diagram of recruitment flow.

Engagement Rates Across Intervention Arms
Engagement rates were defined as the proportion of MEMI or
SM prompts (out of 70) completed during the 14-day
intervention phase. For MEMI participants, engagement was
measured based on their completion of questions asked of them
before and after each 1-2-minute prompt to engage in slow,
rhythmic, diaphragm breathing, present-mindedness, acceptance,
and attending to small moments while doing an activity
(Multimedia Appendix 3). For SM participants, engagement
was measured based on responses to the same questions after
noticing their thoughts and feelings for about 30 seconds and
how distressing they might be (Multimedia Appendix 4).
Participants indicated that they completed instructions in either
arm by selecting “Okay” to those instructions and completing
the postprompt or induction items. An earlier primary efficacy
study reported the manipulation check, showing evidence of
the validity of the momentary induction of MEMI versus SM
in the same sample [66]. By this definition, engagement was
85.3% (60/70; SD 16.8%, 12/70) in MEMI and 85.1% (60/70;
SD 18.7%, 13/70) in SM. No significant between-group
differences in engagement rates were observed (t186.52=–0.06,
P=.95).

Evaluation of Efficacy and Effectiveness on SPDQ
Remission
From pre-post treatment, no significant between-group effects
on SPDQ remission were observed (MEMI: 15.6%; SM: 21.1%;

χ2
1=0.94, P=.33). Likewise, no significant between-group effects

on SPDQ remission occurred from pre-1MFU (MEMI: 26.0%;

SM: 26.3%; χ2
1=0.002, P=.97). Nonetheless, within-group

remission rates in both groups significantly increased from

pre-post treatment (MEMI: 0 to 15.6%; χ2
1=16.27, P<.001; SM:

0 to 21.1%; χ2
1=22.35, P<.001) and pre-1MFU (MEMI: 0 to

26.0%; χ2
1=28.74, P<.001; SM: 0 to 26.3%; χ2

1=28.79, P<.001).

Testing Hypothesis 1 (Acceptable ML Model
Performance)

Pre-Post Treatment Period
SVM was the best-performing initial ML model with all 17
baseline predictors (AUC=.70, 95% CI .68-.72, accuracy=.65,
BAC=.65; refer to Table 2 for other performance metrics).
Supporting hypothesis 1, the final SVM model with the top 10
predictors also yielded good performance (AUC=.71, 95% CI
.69-.73, accuracy=.66, BAC=.66, AUPRC=.39). The AUC of
the SVM (DeLong difference test P=.18) and RF model
(DeLong difference test P=.23) were nonsignificantly better
than the logistic regression model. Regarding calibration, the
model-specific correlation between predicted probabilities and
actual outcomes had a small-to-medium effect size (d=0.38;
Multimedia Appendix 5).
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Table 2. Model performance of the nested 10-fold cross-validation machine learning models predicting Social Phobia Diagnostic Questionnaire (SPDQ)
remission.

AUPRCfF1-scorePPVeSpecificitySensitivityBACdAccuracyUCIcLCIbAUCaModel

Logistic regression

.39.65.66.68.63.64.65.72.68.69Pre-post

.34.74.80.83.69.74.75.85.82.82Pre-1MFUg

Random forest

.39.67.67.68.66.65.65.72.68.69Pre-post

.34.74.80.83.70.75.75.85.82.82Pre-1MFU

Support vector machine

.39.66.67.68.65.72.68.72.68.70Pre-post (initial)

.39.67.68.69.66.73.69.73.69.71Pre-post (final)

.34.73.79.82.68.85.82.85.82.83Pre-1MFU (initial)

.38.67.69.71.65.73.70.73.70.72Pre-1MFU (final)

aAUC: area under the receiver operating characteristic curve.
bLCI: lower bound of the 95% CI.
cUCI: upper bound of the 95% CI.
dBAC: balanced accuracy.
ePPV: positive predictive value.
fAUPRC: area under the precision-recall curve.
g1MFU: 1-month follow-up.

Pre-1MFU Period
SVM was the best-performing initial ML model with all 17
baseline predictors (AUC=.83, 95% CI .82-.85; accuracy=.74,
BAC=.73; refer to Table 2 for other performance metrics). The
AUC of the SVM (DeLong difference test P=.016) and RF
(DeLong difference test P<.001) models were significantly
better than the logistic regression model. Supporting hypothesis
1, the final SVM model with the top 10 predictors also generated
good performance (AUC=.72, 95% CI .70-.73; accuracy=.68,
BAC=.68, AUPRC=.38). Concerning calibration, the
model-specific association between the predicted probabilities
and actual outcomes had a small-to-medium effect size (d=0.37;
Multimedia Appendix 5).

Testing Hypothesis 2 (Theory-Driven Prescriptive
Predictors)

Pre-Post Treatment Period
Figure 2 presents the directions of association between each
predictor and probability of posttreatment SPDQ remission in
the final multivariate model. Regarding strengths, higher trait
mindfulness (4), lower SAD severity (6), absence of current
psychotropic medication use (3), university education (2), and
current psychotherapy (10) predicted optimization to MEMI
over SM. With regard to weaknesses, higher GAD severity (1),
clinician-diagnosed depression or anxiety disorder (5), lower
trait self-compassion (8), and trait emotion regulation (9)
predicted better outcomes from MEMI against SM. With respect
to sociodemographic variables, ethnically Chinese (7)
participants were more likely to experience optimization to the
MEMI than SM. These outcomes were partially consistent with
hypothesis 2.
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Figure 2. Top 10 prescriptive predictors of optimization to mindfulness ecological momentary intervention (MEMI) over self-monitoring app (SM)
for social anxiety disorder at post-treatment in the final multivariate machine learning (ML) model. SHAP: Shapley additive explanations.

Pre-1MFU Period
Figure 3 presents the directions of associations between each
predictor and the probability of 1MFU SPDQ remission in the
final multivariate model. Regarding strengths, higher trait
mindfulness (4), trait emotion regulation (9), lower SAD severity
(6), absence of current psychotropic medication use (2),
university education (5), and current psychotherapy (10)
predicted optimization to MEMI over SM. With regard to
weaknesses, higher GAD severity (1), lower self-compassion
(8), and presence of clinician-diagnosed depression or anxiety

disorder (3) predicted optimization to MEMI. Ethnically Chinese
(7) participants also had a higher probability of experiencing
optimization to the MEMI than SM. These results were partially
concordant with hypothesis 2. Consistent with this hypothesis,
GAD severity, clinician-diagnosed anxiety or depression (cf
compensation model), no psychotropic medication, and higher
education (cf capitalization model) predicted optimization to
MEMI. At the same time, findings that lower SAD severity,
self-compassion, and higher trait mindfulness were prescriptive
predictors of better outcomes from MEMI were also consistent
with predictions.

Figure 3. Top 10 prescriptive predictors of optimization to mindfulness ecological momentary intervention (MEMI) over self-monitoring app (SM)
for social anxiety disorder at one-month follow-up (1MFU) in the final multivariate machine learning (ML) model. SHAP: Shapley additive explanations.

Discussion

Principal Findings
We aimed to test the value of ML in predicting posttreatment
and follow-up SAD remission after a course of brief MEMI
compared to SM. Consistent with hypothesis 1, all multivariate
ML models had AUC values at or above .70, indicating
clinically meaningful, moderate effect sizes (refer to AUC to
Cohen d effect size conversions by [156]). PPV or precision

(percentage of participants accurately predicted to respond better
to MEMI than SM) and other key metrics (sensitivity,
specificity, and F1-score) also suggested acceptable model
performance. SVM and RF notably performed better than
logistic regression, concurring with previous precision
psychiatry research [157] and indicating that these algorithms
could outperform OLS regression to handle high-dimensional
data sets to identify prescriptive predictors. Together, ML might
hold promise in its ability to predict psychotherapy endpoints,
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including brief, fully self-guided smartphone apps, and pinpoint
factors predicting success early in the process.

Offering partial concordance with our second hypothesis, 8 of
10 baseline variables consistently predicted optimization to
MEMI over SM regarding SAD remission at posttreatment and
follow-up: 4 strengths (lower SAD severity, higher trait
mindfulness, absence of psychotropic medications, university
education), 3 weaknesses (higher GAD severity, lower trait
self-compassion, clinician diagnosis of anxiety and depression),
and 1 demographic variable (Chinese ethnicity). Relatedly, 2
variables (current psychotherapy and trait emotion
dysregulation) in the final multivariate predictive models showed
inconsistencies in the direction or sign of predictor-outcome
relations, signaling variable instability [158]. Further research
is thus required to evaluate their potential importance with larger
sample sizes.

Plausibly, clinicians should consider incorporating a focused
set of relevant baseline data when using machine learning (ML)
models to guide treatment decisions. This approach can help
improve the accuracy of predictions while remaining practical
for implementation in clinical settings [159,160]. Potential
accounts are put forth in interpreting these 8 variables that
consistently predicted optimization to brief, fully self-guided
MEMI over SM. Relatedly, these findings should be interpreted
in the context that each predictor adjusted for all other predictors
in the final multivariate model.

Why did those with baseline lower SAD severity and stronger
trait mindfulness respond better to MEMI than SM? Replicating
prior work [57], higher SAD severity, which indicated persistent
avoidance, precluded benefitting from low-intensity, brief, fully
self-guided MEMI as there were no directives to actively expose
themselves to various feared social situations [161]. Further,
similar to a previous meta-regression of MBI RCTs for SAD
[13], perhaps those with high-trait mindfulness were already
good at exercising nonjudgmental acceptance of and
nonreactivity to inner experiences. Thus, MEMI’s ongoing
prompting may have further strengthened the habitual use of
these skills (cf capitalization model [162]). This interpretation
is aligned with a previous RCT, which showed that college
students with high trait mindfulness were more likely to
experience anxiety reductions after a brief MBI [163].

Two other noteworthy strengths that predicted optimization to
MEMI against SM were not using psychotropic medications
and university education status. Plausibly, patients taking
psychotropic medications were less inclined to sustain
improvements because they credited the gains to medication
and thus ceased practicing mindfulness at follow-up. These
interpretations aligned with the established depression literature
[164-166]. Also, although the moderating role of education on
EMIs has been mixed [167], higher education might correspond
with stronger receptivity towards the MEMI.

Replicating and extending previous research [55,56], two
baseline weaknesses—higher GAD severity and lower trait
self-compassion—predicted better responses to MEMI against
SM. Such findings might be attributed to evidence that brief
14-day MBIs could alleviate postevent brooding over social
events. MEMI was most appropriate for high worriers, probably

because its instructions of being present-minded, nonjudgmental,
and accepting was the antithesis of worrying about the future
(cf compensation model [49,64]). The outcome that lower trait
self-compassion predicted higher benefits from MEMI might
be because it was shown to differentially improve
self-compassion domains for people with SAD, including
self-kindness, interpersonal connectedness, and nonidentification
with feelings [168].

Simultaneously, having been diagnosed with depression or
anxiety disorders by a clinician predicted higher SAD remission
probability via the MEMI over SM. Possibly, receiving an
official diagnosis from a mental health care professional could
boost their motivation to uphold their therapy skills practices.
Future research could test the validity of these ideas by directly
administering measures for the usage of therapy skills.

Also, those from the majority Chinese cultural group in
Singapore (a Southeast Asian country), where our RCT was
conducted, benefitted more from MEMI than SM compared to
ethnic minority participants. These findings extended previous
trials, which showed that MBIs, including the brief MEMI [168],
produced stronger efficacy for White (vs non-White) individuals
in mostly United States settings [169,170]. Since ethnic
minorities comprised a disproportionately small proportion in
this study (27/191, 14%), sampling error might have skewed
outcomes toward the ethnic majority. Future studies should
determine if a more balanced sample in terms of ethnic or racial
composition might yield similar findings. Alternatively,
modifying MEMIs for specific cultures might enhance their
ability to meet the needs of ethnic minorities, which remain
understudied in Asia [171]. However, the modifications rooted
in real-life encounters (eg, institutional racism) demand thorough
assessment due to the intricate interplay of intersectional factors
(eg, economic and educational disparities) and varying
conclusions regarding the efficacy of culturally tailored
psychotherapies.

Seven variables were nonsignificant predictors: age, gender,
treatment credibility, expectancy, self-reported depression
symptom severity, trait attentional control, and repetitive
thinking. Perhaps SAD patients with all levels of these baseline
variables could benefit from the MEMI. The nonsignificance
of age, gender, and trait repetitive thinking might suggest that
those variables were not predictive of differential efficacy in
the context of MEMI versus SM for SAD.

Findings should be interpreted considering study limitations.
First, our models require further replication to determine their
relevance across diverse samples. Enlarging the participant pool
may enhance the accuracy of EMIs for SAD by using ML
methods and customizing treatments based on individual traits.
Nevertheless, ML-based multivariate predictive models using
SVM and RF algorithms within nested cross-validation
techniques allow for the development of treatment prediction
models using modest sample sizes, such as ours, effectively
tackling overfitting and class imbalance challenges
[121,172,173]. Second, future endeavors should investigate the
reproducibility of our ML models in the absence of SMOTE.
Third, future research should expand the range of potential
predictors to identify distinctive factors influencing differential
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intervention outcomes. Fourth, prudence should be exercised
when inferring causality while interpreting the predictor outcome
associations and rank variable importance [174]. Fifth, future
studies could enhance calibration by employing more advanced
ML approaches, such as deep learning or ensemble methods,
and include more relevant predictors to improve discriminative
power indexed by the AUPRC [175,176]. Sixth, the value of
ML, such as RF, over traditional logistic regression merits
ongoing investigation [126]. Seventh, ML models should serve
as treatment planning heuristics rather than offering rigid
directives. Eighth, the primarily Chinese (164/191, 83.39%)
and female (149/191, 78.01%) demographic composition might
limit the generalizability of results to other gender and racial
groups. Ninth, as depending solely on self-report could be
vulnerable to response fatigue, response shift, recall bias, and
method variance [177], future similar studies should administer
performance tasks (eg, behavioral avoidance tests) and
biomarkers (eg, physiology [178]) to ensure successful
extinction of fear. Tenth, changes in psychotropic medication
status were not assessed at posttreatment and 1MFU. Future
studies should gather such data and ensure stable medication
doses in all participants to rule out the possibility that any
observed efficacy was due to medication changes. Finally, the
exclusion criteria encompassed those who self-reported suicidal
thoughts, mania, or psychosis, thereby limiting the
generalizability of results to SAD participants with these
psychiatric comorbidities [25,72]. However, excluding these
participants is a sound approach to preserving internal validity
and maintaining participant safety. It concurs with ethical
principles for research with vulnerable populations and aids
with adjusting for potential confounds that might bias findings.

Limitations notwithstanding, study strengths included the
execution of an RCT in Asia, an understudied region [88,179],
and low attrition of 22% (42/191), which was lower than
meta-analytic weighted attrition rates of mindfulness apps

ranging from 24.7% (2287/9258) to 38.7% (3583/9258) [180].
Further, 78% (149/191) actively participated in at least 80%
(56/70) of the EMI prompts. Another strength of the study was
that some of the predictors examined (eg, current medication
use, psychotherapy status) were unlikely to change during the
6-week study period. Finally, all the assessment tools used
herein had a well-established history of use in RCTs and have
shown good sensitivity to change [66,181-183].

Conclusion
To conclude, the AUC values of .71-.72 of the prescriptive
predictor models implied moderate performance, suggesting
that more fine-tuning and validation are needed to raise
confidence about their real-world clinical utility [184]. However,
these findings offer an enhanced understanding of plausible
prescriptive predictors of scalable MEMI outcomes for SAD.
Broadly, clinical psychology encounters obstacles when
implementing precision medicine approaches [185]. However,
the present study adds to growing evidence that building
ML-derived intervention allocation rules in examining which
client with SAD benefits from the MEMI might enhance the
caliber of data-driven clinical judgment. Thus the study provides
potential precision treatment guidelines by means of uncertainty
and probability framing [186] and prescriptive calculators [187].
Such prescriptive calculators should include significant
predictors (in the present context, the 8 consistent predictors),
exclude nonsignificant predictors (eg, age, gender), and focus
on strengths and weaknesses, as informed by the capitalization
and compensation models. Tailored treatments could enhance
patient acceptance while optimizing the integration of
evidence-based intensive psychotherapies in clinical services.
Ultimately, though further refinement will be required to
enhance prescriptive, predictive performance, incorporating
EMI prescriptive models into routine care may enhance the
effectiveness and efficiency of treating SAD within stratified
care models [48].
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